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Semiclassical transition from an elliptical to an oval billiard

Martin Sieber†
Division de Physique Th́eorique‡, Institut de Physique Nucléaire, F-91406 Orsay Cedex, France

Received 19 November 1996

Abstract. Semiclassical approximations often involve the use of stationary phase approxima-
tions. This method can be applied when ¯h is small in comparison with relevant actions or action
differences in the corresponding classical system. In many situations, however, action differ-
ences can be arbitrarily small and then uniform approximations are more appropriate. In this
paper we examine different uniform approximations for describing the spectra of integrable sys-
tems and systems with mixed phase space. This is done on the example of two billiard systems,
an elliptical billiard and a deformation of it, an oval billiard. We derive a trace formula for the
ellipse which involves a uniform approximation for the Maslov phases near the separatrix, and
a uniform approximation for tori of periodic orbits close to a bifurcation. We then examine how
the trace formula is modified when the ellipse is deformed into an oval. This involves uniform
approximations for the break-up of tori and uniform approximations for bifurcations of periodic
orbits. Relations between different uniform approximations are discussed.

1. Introduction

Semiclassical trace formulae are important tools for analysing spectra of quantum systems.
Recently, they have found a wide range of applications (see for example [1–3]). Trace
formulae have been derived for integrable and chaotic systems when periodic orbits lie on
tori in phase space or are isolated [4–8]. Families of orbits in systems with more general
symmetries have also been treated [9, 10].

Most systems, however, are neither integrable nor chaotic, but have a phase space
which is intricately divided into regular and chaotic regions. In these systems there exist
classical structures on all scales, and neighbouring periodic orbits can have arbitrarily small
action differences. For the semiclassical approximation this has the consequence that in
many cases stationary phase approximations cannot be applied since they rely on the fact
that action differences of periodic orbits are large in comparison to ¯h. Instead, one has to
use approximations which are uniformly valid in two small parameters, ¯h and ε, whereε
describes the separation of neighbouring periodic orbits.

A typical situation where small action differences of periodic orbits occur is near
bifurcations of periodic orbits. Bifurcations are an ubiquitous phenomenon in mixed
systems. They occur any time the stability angle of a stable orbit is a rational multiple
of 2π . If, for example, one changes an external parameter of a system by an arbitrarily
small but finite amount (or the energy in a generic system), then in general an infinite
number of bifurcations occur, most of them for long periodic orbits.
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‡ Unité de Recherche des Universités Paris XI et Paris VI associée au CNRS.

0305-4470/97/134563+34$19.50c© 1997 IOP Publishing Ltd 4563



4564 M Sieber

Bifurcations occur in different forms, but the number of generic forms in two-
dimensional systems is finite. They were classified by Meyer [11] and Bruno [12, 13].
Their form depends on the repetition numberm of an orbit that bifurcates. The semiclassical
treatment of these generic bifurcations was investigated by de Almeida and Hannay [14].
They derived contributions to the trace formula from periodic orbits near bifurcations in
terms of standard diffraction catastrophe integrals. These approximations have for example
been applied for treating tangent bifurcations and pitchfork bifurcations [15, 16]. For the
largest class of bifurcations withm > 4 the results of de Almeida and Hannay were extended
in [17] by including higher-order terms in the normal form expansion for the bifurcation.
In this way a uniform approximation was obtained which interpolates over the regime from
the bifurcation up to regions where the approximation of Gutzwiller [4, 8] can be applied
which treats the orbits as being isolated.

Another situation in which small action differences occur is in the quasi-integrable
regime, i.e. for small perturbations of integrable systems. Due to the perturbation all rational
tori of the integrable system break up into a finite number of periodic orbits which have
small action differences when the perturbation is small. de Almeida [18] derived a uniform
approximation which is valid if the splitting of the orbits is small. A formula for the
break-up of families of orbits due to more general symmetries was derived by Creagh [19].
Tomsovicet al [20] and Ullmoet al [21] extended the result of de Almeida and obtained a
uniform approximation which interpolates between the torus contribution and Gutzwiller’s
approximation.

Small action differences of neighbouring periodic orbits can also occur in integrable
systems, since bifurcations of periodic orbits can also occur there. These bifurcations do
not belong to the class of generic bifurcations, since they result in the appearance of whole
new tori of periodic orbits. A uniform approximation for the contributions of tori that result
from the bifurcation of a stable orbit was derived by Berry and Tabor [6] and Richens [22].

This paper contains an investigation and discussion on the various concepts which are
mentioned above. This is done on the example of two billiard systems, an ellipse and a
deformation of it, an oval. The classical motion in an ellipse is integrable and has several
characteristic properties. There is a separatrix which separates two kinds of motion, around
the two foci and between the two foci. Furthermore, in addition to the usual tori of periodic
orbits there are also two isolated periodic orbits in the ellipse (and their repetitions), one
stable and one unstable. When the eccentricity of the ellipse is increased, then new tori of
periodic orbits arise through bifurcations of the stable orbit and its repetitions. All these
classical properties have an influence on the semiclassical approximation. After a brief
review of the classical and quantum mechanics in the ellipse we discuss the semiclassical
EBK quantization for the ellipse. Near the separatrix this quantization condition has to
be modified by a (non-integer) uniform approximation for the Maslov index, since this
index is discontinuous at the separatrix which leads to ambiguities and inaccuracies in
the semiclassical quantization [23, 24]. From this modified EBK-quantization condition we
derive a trace formula for the ellipse. We show in detail how the contributions of regular tori
of orbits, of tori near bifurcations, of the isolated periodic orbits and the area and perimeter
contributions can be obtained from the modified EBK-quantization conditions. We close
this section with a numerical examination of the trace formula.

We then examine an oval-shaped billiard which can be considered as a deformation of
an ellipse. We investigate how the semiclassical approximation for the ellipse is changed
when the ellipse is deformed into the oval. Due to this perturbation all tori of periodic orbits
break up into a finite number of orbits. When the tori are not close to a bifurcation then the
uniform approximation for the break-up of tori can be applied. For tori near bifurcations
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one has to use a different approximation. It will be shown that the (slightly modified)
uniform approximations for generic bifurcations also describe the break-up of the tori near
bifurcations. We present a detailed numerical examination of semiclassical approximations
in the oval, and we discuss the relations between different uniform approximations that are
used in this paper.

2. The elliptical billiard

In this section we shall discuss various properties of the elliptical billiard. This is an
integrable billiard system whose boundary is defined by

x2

a2
+ y

2

b2
= 1 (1)

where a and b < a are the lengths of the semimajor and semiminor axis, respectively.
The ellipse has two focal points with coordinates(±c, 0), wherec = √a2− b2, and its
eccentricity is defined bye = c/a. The billiard area isA = πab and its perimeter is
L = 4aE(e) where E(κ) is the complete elliptic integral of the second kind [25] (see
equation (12) below).

The classical properties in the elliptical billiard have been investigated under different
view points. This includes the treatment of the action-angle variables [26], the caustics of
the classical motion [26, 27], Poncelet’s theorem [28, 29], the billiard map [30, 31], and the
periodic orbits [29, 32, 33]. A treatment of the Schrödinger equation for the elliptical billiard
can be found in [34]. In the following we briefly review classical and quantum properties
of the elliptical billiard because they are used for the semiclassical approximation. We then
discuss the EBK quantization for the billiard and a uniform extension of it, and we derive
a trace formula in terms of the periodic orbits of the system.

2.1. Classical mechanics of the elliptical billiard

The classical motion of a particle in an elliptical billiard is conveniently described in
elliptical coordinates

x = c coshu cosv

y = c sinhu sinv
(2)

whereu is restricted to 06 u 6 arctanh(b/a) and v is a periodic coordinate with period
2π . In terms of these coordinates the Lagrangian has the form (with massm = 1

2)

L = c2

4
(cosh2 u− cos2 v)(u̇2+ v̇2) (3)

the canonical momenta are given by

pu = ∂L

∂u̇
= c2

2
u̇(cosh2 u− cos2 v)

pv = ∂L

∂v̇
= c2

2
v̇(cosh2 u− cos2 v)

(4)

and the Hamiltonian is

H = p2
u + p2

v

c2(cosh2 u− cos2 v)
. (5)
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The two conserved quantities of the system are the energy and the productL1L2 of the
two angular momenta about the two foci

L1L2 = p2
v sinh2 u− p2

u sin2 v

cosh2 u− cos2 v
. (6)

It is more convenient to use another conserved quantity, instead ofL1L2, which is energy
independent and is determined by the geometrical properties of a trajectory only. This
is α = L1L2/E whose values are restricted to the rangeb2 > α > −c2. The upper
limit α = b2 corresponds to the motion along the boundary and the lower limitα = −c2

corresponds to the motion along the minor axis.
In terms ofE andα, the canonical momenta, are given by

p2
u = E(c2 sinh2 u− α)
p2
v = E(c2 sin2 v + α). (7)

There are two different kinds of motion in the ellipse depending on the sign ofα. For
0< α 6 b2 the trajectories have a caustic in the form of a confocal ellipse with semiminor
axisb′ = √α. The motion goes around the two focal points and is composed of a libration
in the coordinateu and a rotation in the coordinatev. For−c2 6 α < 0 the caustic of the
motion is a confocal hyperbola with semiconjugate axisb′ = √−α and semitransverse axis
a′ = √c2+ α. The motion is composed of a libration in the coordinateu and a libration in
the coordinatev, and the trajectories cross thex-axis always between the two focal points.
Both kinds of motions are separated by a separatrix which consists of orbits withα = 0
that go through the focal points of the ellipse.

Figure 1 shows a Poincaré section through the classical motion in an ellipse for different
initial conditions. The boundary of the billiard is chosen as the surface of the section and on
this surface the reflections are described in Birkhoff coordinates:s is the arclength along the
billiard boundary andp is the cosine of the angle between the outgoing trajectory and the
tangent to the boundary at the reflection point. The two lines through(s, p) = (0, 0) mark
the separatrix of the motion. The lines inside the separatrix correspond to the librational
motion withα < 0 and the lines outside the separatrix correspond to the rotational motion

–1.0

–0.5

0.0

0.5

1.0

s/L

Figure 1. A Poincaŕe section through the motion in an ellipse withb
a
= 9

11. The boundary of
the billiard is taken as surface of section and the reflections are described in Birkhoff coordinates
s andp. L denotes the perimeter of the ellipse.
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with α > 0. The form of the lines in figure 1 is given by

p =
√
α + c2 sin2 v

b2+ c2 sin2 v

s = aE(π/2, e)+ aE(v − π/2, e)
(8)

where the dependence ofp on v is obtained from (7) withp = pv/
√
p2
v + p2

u, and E(ϕ, e)
is defined in (12).

The periodic orbits of the elliptical billiard can be determined by introducing action-
angle variables. The actions are given by

Iu = 1

2π

∮
pu du =

√
E

π

∫ u1

u0

du
√
c2 sinh2 u− α

Iv = 1

2π

∮
pv dv = 2

√
E

π

∫ v1

v0

dv
√
c2 sin2 v + α

(9)

where

for α > 0 u0 = arcsinh
b′

c
u1 = arcsinh

b

c
v0 = 0 v1 = π

2

for α < 0 u0 = 0 u1 = arcsinh
b

c
v0 = arcsin

b′

c
v1 = π

2

(10)

andb′ = √|α|. Here we choose a definition ofIu which is actually the action for only half
a cycle if α < 0. The reason is that otherwiseIu is discontinuous ifα changes sign. We
remark that the actions in a half-ellipse which is cut along thex-axis have the values given
by equations (9) and (10).

The integrations in (9) yield

Iu =



√
E

π

[
a

b

√
b2− α − c

κ
E

(
arcsin

√
b2− α
b2

, κ

)]
for α > 0

√
E

π

 ab√
b2− α −

α

c
F

arcsin

√
b2

b2− α ,
1

κ

− cE
arcsin

√
b2

b2− α ,
1

κ


for α < 0

Iv =


2
√
E

π

c

κ
E
(π

2
, κ
)

for α > 0

2
√
E

π

[
α

c
F

(
π

2
,

1

κ

)
+ cE

(
π

2
,

1

κ

)]
for α < 0

(11)

whereκ = c/a′ = c/√c2+ α, and the functions

F(ϕ, κ) =
∫ ϕ

0

dθ√
1− κ2 sin2 θ

E(ϕ, κ) =
∫ ϕ

0

√
1− κ2 sin2 θ dθ (12)

are the elliptic integrals of the first and second kind [25]. The quantityκ is called the
modulus of the elliptic integrals. The corresponding complete elliptic integrals are denoted
by E(κ) = E(π/2, κ) and K(κ) = F(π/2, κ).



4568 M Sieber

The tori of periodic orbits of the elliptical billiard are determined by the condition that
the quotient of the angular frequenciesωu andωv is rational:

ωu

ωv
=

∂E
∂Iu

∣∣∣
Iv

∂E
∂Iv

∣∣∣
Iu

= − ∂Iv

∂Iu

∣∣∣∣
E

= −
∂Iv
∂α

∣∣
E

∂Iu
∂α

∣∣
E

= n

m
(13)

and with

∂Iu

∂α
|E =


−
√
Eκ

2πc
F

(
arcsin

√
b2− α
b2

, κ

)
for α > 0

−
√
E

2πc
F

arcsin

√
b2

b2− α ,
1

κ

 for α < 0

∂Iv

∂α
|E =


κ
√
E

πc
F
(π

2
, κ
)

for α > 0
√
E

πc
F

(
π

2
,

1

κ

)
for α < 0

(14)

one obtains the conditions for periodic orbits. We will consider in the following the cases
α > 0 andα < 0 separately.

The caseα > 0.

The condition for periodic orbits is

F

(
arcsin

√
b2− α
b2

, κ

)
= 2m

n
F
(π

2
, κ
)
= 2m

n
K(κ). (15)

This equation has a solution for alln = 3, 4, . . . and 16 m < n/2, and the integersn andm
are the number of reflections of an orbit and its rotation number, respectively. Equation (15)
determines the value ofα for a family of periodic orbits.

We briefly discuss the casem = n/2. For this case periodic orbits also exist which are
the orbits along the major axis and its repetitions. However, these orbits are isolated and
do not appear in families. This is reflected by the fact that form = n/2, there exists no
solution of equation (15) (although it does exist for equation (13)). In the limitα → 0,
the first argument of the elliptic integral on the right-hand side of equation (15) approaches
π/2, but the integral itself is divergent in this limit sinceκ → 1. The correct limiting
behaviour can be obtained from the relation [35]

F(ϕ, κ)+ F(ψ, κ) = F
(π

2
, κ
)

if
√

1− κ2 tanϕ tanψ = 1. (16)

From this relation it follows that

lim
α→0

[
F
(π

2
, κ
)
− F

(
arcsin

√
b2− α
b2

, κ

)]
= F

(
arctan

c

b
, 1
)
= log

a + b
c

. (17)

A different way of writing condition (15) is obtained by inverting the equation which
leads to √

b2− α
b2

= sn

(
2m

n
K

)
(18)
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where sn(u) is a Jacobian elliptic function. In the above notation, the modulusκ, which
acts as an independent variable, is omitted.

The lengths of the periodic orbits are given by

ln,m = 2π√
E
(nIu+mIv)

= 2na

b

√
b2− α − 2nc

κ
E

(
arcsin

√
b2− α
b2

, κ

)
+ 4mc

κ
E
(π

2
, κ
)

= 2na

b

√
b2− α − 2nc

κ
Z

(
2m

n
K

)
(19)

where equations (11) and (15) have been used and Z(u) is Jacobi’s zeta function

Z(u) = E(ϕ, κ)− F(ϕ, κ)
E(π/2, κ)

F(π/2, κ)
. (20)

Hereu = F(ϕ, κ) and the dependence ofZ(u) on the modulusκ is again omitted in the
notation.

Addition theorems for Jacobian elliptic functions and Jacobi’s zeta function can be used
to obtain algebraic expressions for lengths andα-values of periodic orbits. For example,
for the casen = 4 andm = 1 one obtains

sn

(
K

2

)
= 1√

1+√1− κ2
Z

(
K

2

)
= 1

2

κ2

1+√1− κ2
. (21)

From this it follows that the periodic orbits have the conserved quantityα = b4/(a2 + b2)

and lengthl = 4
√
a2+ b2. Two examples of periodic orbits of this torus are shown in

figure 2(a).

The caseα < 0.

For α < 0 the condition for periodic orbits is

F

arcsin

√
b2

b2− α ,
1

κ

 = 2m

n
F

(
π

2
,

1

κ

)
= 2m

n
K

(
1

κ

)
(22)

with the restriction thatn has to be an even integer, since the bounces at the boundary occur
alternately in the upper and lower half of the ellipse. This requirement is a consequence
of the definition ofIu in equations (9) and (10) which is the action for only half a cycle if
α < 0.

(a) (b)

Figure 2. Two examples of tori of periodic orbits forb
a
= 5

3 . For each torus two periodic orbits
are plotted (full and broken lines) and the caustic (dotted curves). (a) Torus withn = 4,m = 1
andα > 0. (b) Torus withn = 4, m = 1 andα < 0.
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The tori of periodic orbits can be labelled byn = 4, 6, . . . , and 16 m < n/2, where
the integersn andm are the number of reflections of an orbit and its libration number,
respectively. Equation (22) has a solution for all these values ofn andm in the range
0< α < −∞. However, if the value ofα for a solution is smaller than−c2, then the torus
is complex, as is the modulus 1/κ. If one decreases the ratiob/a then the torus becomes
real. This happens when

b

a
= sin

mπ

n
(23)

which follows from equation (22) withα = −c2 and F(ϕ,0) = ϕ. For α = −c2 the torus
has zero extension and coincides with the orbit along the minor axis. Thus, all tori arise
through bifurcations of the stable orbit (and its repetitions) when the ratiob/a is decreased
from its starting valueb/a = 1 in a circle.

We discuss again the casem = n/2 which corresponds to the periodic orbit along the
major axis and its repetitions. Also forα < 0 no solution exists for equation (22) ifm = n/2
as can be seen by using (16). This yields

lim
α→0

F

(
π

2
,

1

κ

)
− F

arcsin

√
b2

b2− α ,
1

κ

 = F
(

arctan
c

b
, 1
)
= log

a + b
c

. (24)

The inverted form of condition (22) is given by√
b2

b2− α = sn

(
2m

n
K

)
(25)

where the modulus of the functions sn and K is now 1/κ.
The lengths of the periodic orbits are given by

ln,m = 2π√
E
(nIu+mIv)

= 2nab√
b2− α − 2ncE

arcsin

√
b2

b2− α ,
1

κ

+ 4mcE

(
π

2
,

1

κ

)

= 2nab√
b2− α − 2ncZ

(
2m

n
K

)
(26)

where equations (11) and (22) have been used.
We give again explicit expressions for the casen = 4 andm = 1. The values of sn(K/2)

and Z(K/2) are now given by (21) withκ replaced by 1/κ. It follows that the periodic orbits
have the conserved quantityα = −b4/(a2 − b2) and lengthl = 4a2/

√
a2− b2. Examples

of periodic orbits of this torus are shown in figure 2(b).
Detailed illustrations of properties of periodic orbits in the ellipse can be found in [32].

2.2. Quantum mechanics of the elliptical billiard

The Schr̈odinger equation in elliptical coordinates has the following form (in dimensionless
units h̄ = 2m = 1)

−
(
∂2

∂u2
+ ∂2

∂v2

)
ψ(u, v) = Ec2(cosh2 u− cos2 v)ψ(u, v). (27)



Semiclassical transition from an elliptical to an oval billiard 4571

Writing ψ(u, v) = ψ1(v)ψ2(u), this equation separates into two ordinary differential
equations

ψ ′′1 (v)+ (d − h2 cos2 v)ψ1(v) = 0 (28)

− ψ ′′2 (u)+ (d − h2 cosh2 u)ψ2(u) = 0 (29)

whereh = √Ec and d = E(c2 + α). In this section we use the notation of Morse and
Feshbach [34] except for naming the separation constant in (28) and (29)d instead ofb
since this letter is already used for one of the half-axes. The first equation (28) is Mathieu’s
equation. For every value ofh there is a countable number of values ofd for which it has
periodic solutions of periodπ or 2π . These values are denoted by der (h), r = 0, 1, . . . ,
and dor (h), r = 1, 2, . . .. The corresponding solutions are the Mathieu functions Ser (h, z)

and Sor (h, z), wherez = cosv, 0 < v < π . They are even and odd, respectively, with
respect to reflection on thex-axis (v→−v).

The second equation (29) is Mathieu’s equation for an imaginary argument: with the
values der and dor for the constantd, the solutions of this equation that are regular atu = 0
are the radial Mathieu functions of the first kind Jer (h, z) and Jor (h, z) wherez = coshu.
The energy eigenvalues of the Schrödinger equation follow from the conditions

Jer (h, coshU) = 0 r = 0, 1, . . .

Jor (h, coshU) = 0 r = 1, 2, . . .
(30)

where U = arctanh(b/a). The functions Je and Jo have the properties
[dJer (h, coshu)/du]u=0 = 0 and Jor (h, coshu)|u=0 = 0.

The solutions can be separated into the four symmetry classes of the elliptical billiard.
These symmetry classes will be denoted by two letters, where the first denotes the boundary
condition on thex-axis and the second denotes those on they-axis. For example,DN
denotes the symmetry class of wavefunctions which satisfies Dirichlet boundary conditions
on thex-axis and Neumann boundary condition on they-axis.

The solutions of the Schrödinger equation for all four symmetry classes are, up to a
normalization constant,

DD : So2r+2(h, cosv)Jo2r+2(h, coshu) DN : So2r+1(h, cosv)Jo2r+1(h, coshu)

ND : Se2r+1(h, cosv)Je2r+1(h, coshu) NN : Se2r (h, cosv)Je2r (h, coshu)
(31)

wherer = 0, 1, . . .. In the limit h→ 0 these solutions reduce to the solutions of the circular
billiard, i.e. to a product of trigonometric and Bessel functions [34].

A numerical examination of the energy spectrum of the elliptical billiard is dependent
on the ratio of the two half-axes can be found in [36].

2.3. The semiclassical approximation for the elliptical billiard

In this section we derive a semiclassical trace formula for the spectral density of the elliptical
billiard. We follow the method of Berry and Tabor [6] and start with the EBK quantization.
The semiclassical spectral density which is obtained from it is then re-expressed by applying
the Poisson summation formula to it. From this representation the trace formula for the
ellipse is derived.
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2.3.1. The EBK quantization.The EBK-quantization conditions for the elliptical billiard
were examined in [26]. They can be written in the following form

α > 0 : Iu = nu+ 3

4
nu = 0, 1, . . . Iv = |nv| nv ∈ Z

α < 0 : 2Iu = nu+ 1 nu = 0, 1, . . . Iv = nv + 1

2
nv = 0, 1, . . . .

(32)

The factor of 2 which appears in the condition forIu andα < 0 is due to the fact thatIu

is the action for only half a cycle. The condition forIv andα > 0 corresponds to periodic
boundary conditions. It leads to a twofold degeneracy of all semiclassical energy levels
with nv 6= 0 andα > 0. This degeneracy is only semiclassical since the true quantum levels
are not degenerate (if the ellipse is not a circle). It is a consequence of the fact that the tori
of clockwise and anticlockwise rotations, respectively, about the two foci yield the same
semiclassical energies.

The formulation of the EBK conditions for the full ellipse is not very convenient. If
the α-value of a semiclassical state changes sign (as a consequence of changing the ratio
b/a), then the state is described by different quantum numbers than before. For that reason,
it is advantageous to formulate the semiclassical quantization for a half-ellipse where this
problem does not appear. The semiclassical levels of the full ellipse are then obtained by
adding the spectra of two half-ellipses which have Dirichlet (D) or Neumann (N ) boundary
conditions on thex-axis, respectively, (and Dirichlet boundary conditions on the remaining
arc). For these two systems the EBK conditions have the form

D : α > 0 Iu = nu+ 3
4 Iv = nv + 1 nu, nv = 0, 1, . . .

α < 0 Iu = nu+ 1 Iv = nv + 1
2 nu, nv = 0, 1, . . .

N : α > 0 Iu = nu+ 3
4 Iv = nv nu, nv = 0, 1, . . .

α < 0 Iu = nu+ 1
2 Iv = nv + 1

2 nu, nv = 0, 1, . . . .

(33)

As one can see, the quantization conditions are discontinuous atα = 0, and as a
consequence the semiclassical quantization is inaccurate nearα = 0. This was examined
in detail in [23, 24]. It was found that nearα = 0 there are sometimes two different
semiclassical approximations for one quantum state, and sometimes there is no semiclassical
approximation. A remedy to this problem is the application of a uniform approximation
nearα = 0, which yields quantization conditions in terms of a non-integer Maslov index
that interpolates smoothly between the casesα < 0 andα > 0. This uniform approximation
was derived in [23] by expanding the potential terms in equations (28) and (29) up to second
order in u and v. The solutions of the corresponding differential equations are parabolic
cylinder functions. By matching the asymptotic form of these solutions with the EBK
solutions one obtains a uniform approximation for the Maslov phase. As a consequence,
conditions (33) are replaced by

D : Iu = nu+ 1

2
+ βA(ᾱ)

π
Iv = nv + 2βA(−ᾱ)

π
nu, nv = 0, 1, . . .

N : Iu = nu+ 1

2
+ βS(ᾱ)

π
Iv = nv + 2βS(−ᾱ)

π
nu, nv = 0, 1, . . .

(34)

whereᾱ = α√E/(2c) and

βS(ᾱ) = θ − π
4
+ ᾱ

2
log |ᾱ| − ᾱ

2
− 1

2
arg0

(
1

2
+ iᾱ

)
(35)

θ = arctan
[√

1+ e2πᾱ + eπᾱ
]

(36)
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and βA(ᾱ) is given by (35) by replacingθ with π − θ . The original conditions (33) are
recovered with the limiting values ofβS andβA

ᾱ→+∞ : βS, βA→ π

4
ᾱ→−∞ : βS → 0, βA→ π

2
. (37)

With this uniform approximation for the Maslov phase the previous ambiguity of the
semiclassical quantization is removed. A further advantage of the uniform approximation
is that it removes the semiclassical degeneracy of energy levels in the full ellipse that was
discussed at the beginning of this section.

An alternative possibility for treating the semiclassical influence of the separatrix
consists of the inclusion of complex tunnelling orbits. This was done for the ellipse in
[37].

2.3.2. The spectral density.We now derive a trace formula for the spectral density of the
elliptical billiard in terms of the periodic orbits of the system. We follow the method of
Berry and Tabor [6] and apply the Poisson summation formula to the semiclassical spectral
density which is obtained from the EBK quantization. We do this here for the two cases of
a half-ellipse with Dirichlet or Neumann boundary conditions on thex-axis. The spectral
density is given by

d(E) =
∞∑

nu,nv=0

δ(E − Enu,nv ) =
∞∑

n,m=−∞

∫ ∞
0

dIu

∫ ∞
0

dIv J̃ (Iu, Iv)

× exp
{

2π in
(
Iu− νu

4

)
+ 2π im

(
Iv − νv

4

)}
δ(E − Enu,nv ) (38)

where after the application of the Poisson summation formula the integration variables have
been changed fromnu andnv to Iu = nu − νu/4 andIv = nv − νv/4. The valuesEnu,nv

denote the energies which are determined by the EBK-quantization conditions (34) for either
D- or N -boundary conditions. For simplicity of notation, we do not write an additional
index for the boundary conditions. The quantitiesνu andνv are the Maslov indices. They
are approximated by the uniform approximation given in (34).J̃ (Iu, Iv) is the Jacobian
of the transformation from the variablesnu andnv to Iu and Iv. If the dependence of the
Maslov phases on̄α = α√E/(2c) can be neglected then this Jacobian is equal to 1.

After a further change of variables fromIu andIv to α andE one obtains

d(E) =
∞∑

n,m=−∞

∫ b2

−c2
dα J (α,E)e2π in(Iu−νu/4)+2π im(Iv−νv/4) (39)

whereJ (α,E) is the Jacobian of the transformation fromnu andnv to α andE. For values
of α andE where ᾱ = α√E/(2c) is not small one can neglect theα-dependence of the
Maslov phases and the Jacobian is given by

J (α,E) =
∣∣∣∣∂nu

∂E

∂nv

∂α
− ∂nv
∂E

∂nu

∂α

∣∣∣∣ = 1

2E

∣∣∣∣Iu
∂Iv

∂α
− Iv ∂Iu

∂α

∣∣∣∣ (40)

which is a function ofα only.
We discuss in the following the different contributions to the integrals in (39). In doing

this we assume that the eccentricity of the ellipse is not small. If it is small then the unstable
and stable orbits along the two axis of the ellipse cannot be treated as isolated orbits, since
they result from the break-up of a torus of the circular billiard. An investigation of the
semiclassical contributions of these orbits for small eccentricity was carried out in [19].
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2.3.3. The area contribution.The term withn = 0 andm = 0 in (39) and (38) is the
only one with non-oscillatory integrand and it contributes to the mean level density. In this
section we consider this term in the original EBK approximation, i.e. we setJ̃ (Iu, Iv) = 1
in (38). Then it corresponds to the Thomas–Fermi approximation for the spectral density
which in the billiard system is identical to the area term of Weyl’s law. This is shown
in general in [6] by making a (canonical) transformation from action-angle variables to
coordinate and momentum variables.

d0,0(E) =
∫ ∞

0
dIu

∫ ∞
0

dIv δ(E − Enu,nv )

= 1

4π2

∫ ∞
0

dIu

∫ ∞
0

dIv

∫ 2π

0
d8u

∫ 2π

0
d8v δ(E − Enu,nv )

= 1

4π2

∫ ∞
−∞

d2p

∫
D

d2q δ(E − p2)

= A

4π
(41)

whereD is the domain of the billiard system with areaA. For a half-ellipseA = πab/2.
If the correct JacobiañJ (Iu, Iv) is taken in (38), then there is an additional contribution

from the region aroundα = 0. This is a higher-order correction and does not change the
leading-order term (41). As will be shown in section 2.3.8 this additional contribution is
the perimeter contribution of the major axis to the mean level density of the half-ellipse.

2.3.4. Contributions of orbits withα > 0. For all other terms the integrand in (39)
is oscillatory and the main contribution comes from values ofα where the phase of
the exponential function is stationary. We consider first contributions fromα > 0 and
approximate them by a stationary phase approximation. We neglect a possibleα-dependence
of the Maslov phase, i.e. we assume that the energy is large enough so thatᾱ = α√E/(2c)
is not small at a stationary point and the Maslov index can be considered constant. Then the
Jacobian is given by (40) and we drop its second argument since it is energy independent.
The integrals in (39) can then be considered to be integrals over the energy surface
E = constant of the billiard system. This energy surface is plotted in figure 3. The
stationary points are the points in this figure where the slope of the curve is rational.
Examples are given forn = 3,m = 1 andα < 0 andα > 0, respectively. The curvature of
the energy surface is positive forα > 0 and negative forα < 0.

The stationary phase condition is
∂

∂α
(nIu+mIv) = 0 (42)

and it coincides with condition (13) for periodic orbits. It has a solution forn = 3, 4, . . .
and 16 m < n/2 and for the corresponding negative values ofm and n. The term for
negative values(−n,−m) is the complex conjugate of the term for(n,m) as can be seen
from equation (39) sinceJ is real. For that reason we calculate the contributions for positive
values ofn andm and add at the end a complex conjugate contribution. The result of the
stationary phase approximation for a term corresponding to a pair(n,m) is

J (αen,m)
exp{2π in(Iu− νeu

4 )+ 2π im(Iv − νev
4 )+ i π4 }√

n∂
2Iu
∂α2 +m∂2Iv

∂α2

(43)

whereαen,m is the value ofα at the stationary point. The superscripte denotes that we
consider in this section contributions of periodic orbits with elliptical caustic.
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Figure 3. The curve(Iv(α), Iu(α)) for a half-ellipse with axis ratiob
a
= 9

11. The actionIv is
negative ifα < −c2. The line from the origin marks the point corresponding toα = 0. The
values of the actions for two tori of periodic orbits are marked as examples: (1) torus with
n = 3, m = 1 andα > 0, and (2) torus withn = 3, m = 1 andα < 0.

The second derivatives of the actions are given by

∂2Iu

∂α2
= − κ2

4αc2

(
Iu−

√
Eab

π
√
b2− α

)
∂2Iv

∂α2
= − κ2

4αc2
Iv.

(44)

These relations are also valid forα < 0. At the stationary points one further has

J (αen,m) =
len,m

4πn
√
E

∂Iv

∂α
(45)

which follows from equations (13) and (19).
Combining all results, one obtains the joint contribution of the pairs(n,m) and

(−n,−m)

den,m(E) =
√

2αen,m
πk

len,mF
(
π
2 , κ

e
n,m

)
nπ

√
2nab√
b2−αen,m

− len,m
cos

(
klen,m −

π

2
nνeu −

π

2
mνev +

π

4

)
(46)

wherek = √E is the wavenumber. The results for the two half-ellipses are identical since
the Maslov indices areνeu = 3 andνev = 4 for D, andνeu = 3 andνev = 0 for N and thus
the argument of the cosine differs by a multiple of 2π .

For the derivation of equation (46) we assumed that the parameterᾱ is large at a
stationary point. If this is not the case then the approximation is more complicated. Then
one has to take into account theα-dependence of the uniform approximation for the Maslov
phase in the exponent when one determines the stationary points. This leads to a replacement
of condition (42) by

∂

∂α
(nnu+mnv) = 0 (47)

wherenu andnv are expressed as functions ofα by equations (34). The same modification
also applies to tori with small negative values ofᾱ. Condition (47) does not correspond
to the condition for periodic orbits (42) any more, but in the limitE → ∞ the previous
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stationary phase condition (42) is recovered. This is similar to the treatment of whispering
gallery orbits in the circular billiard [38]. (For contributions of whispering gallery orbits
in the stadium billiard see [39].) Their semiclassical description involves effective lengths
which are different from the lengths of periodic orbits. We do not further discuss the
modifications due to equation (47), a detailed investigation of contributions of tori near the
separatrix is carried out in [37]. Finally, we remark that we did not consider corrections
for whispering gallery orbits withα ≈ b2 in this section. These corrections go beyond the
EBK quantization [38].

2.3.5. Contributions of orbits withα < 0. In the case of negativeα the main contributions
come again from the stationary points of the integrand in (39), and as before we assume
that theᾱ is not small at these points. However, now the stationary points can also lie
outside the integration range (when the corresponding torus is complex) or very close to
the lower end of the integration range. For these cases a stationary phase approximation
is not appropriate and one has to use a uniform approximation instead. We apply here the
uniform approximation of Berry and Tabor [6] for integrals with a stationary point that can
lie near the boundary or outside the integration range. This approximation can be written
in the form [22]∫ ∞
α0

dα g(α)eikf (α) = g(α∗)
√

2π iβ√
k|f ′′(α∗)| eikf (α∗)

[
2(α∗ − α0)

+
√

iβ

2π
sign(α∗ − α0)

∫ ∞
3

dX
1

X2
e

iβ
2 X

2

]
+ i

k

g(α0)

f ′(α0)
eikf (α0) (48)

whereβ = sign(f ′′(α∗)), 3 = √2kβ(f (α0)− f (α∗)), α∗ is determined byf ′(α∗) = 0, and
2(α) denotes the Heaviside theta function. The terms on the right-hand side of equation (48)
can be interpreted as follows. The term multiplying the2-function is the stationary phase
approximation of the integral, the last term is the contribution from the boundary (which can
be obtained by integration by parts), and the remaining term is an interference term between
both. As will be seen in the following section, the sum over all boundary contributions
gives the Gutzwiller expression for the semiclassical contribution of the stable orbit along
the minor axis of the billiard and its repetitions. When the ratiob/a of the two half-axes
is decreased then new tori of periodic orbits arise through bifurcations of the stable orbit
(and its repetitions). At the bifurcation point the new tori coincide with the stable orbit and
have zero extension, and asb/a is decreased further they separate from the stable orbit.
This is expressed by formula (48). Far away from the bifurcation the interference term
can be neglected and the torus is well separated from the stable orbit. However, near the
bifurcation, the contributions of the torus and the stable orbit cannot be separated, they rather
give a joint contribution. At the bifurcation the Gutzwiller contribution of one repetition
of the stable orbit diverges and this divergence is cancelled by a similar divergence of the
interference term.

We consider in this section only the stationary phase term and the interference term in
equation (48). The sum over the boundary contributions is performed in the next section.
The stationary phase condition is again given by equation (42) which has a solution for
n = 3, 4, . . . and 16 m < n/2 and for the corresponding negative values ofm andn (since
we consider that a half-ellipsen does not have to be even). As before we calculate only
the contributions for positive values ofn andm and add at the end a complex conjugate
contribution.

The second derivatives of the actions are given by equation (44) and the value of the
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Jacobian at a stationary point by equation (45) with the difference that now the quantities
are given a superscripth to signify the contributions of tori with a hyperbolical caustic. The
value ofβ in (48) is−1 since the curvature of the energy surface is negative for negative
values ofα. Inserting these values into (48) one obtains

dhn,m(E) =
√

2|αhn,m|
πk

lhn,mF
(
π
2 ,

1
κhn,m

)
nπ

√(
2nab√
b2−αhn,m

− lhn,m
)
(κhn,m)

2

×
[
2(αhn,m + c2) cos

(
klhn,m −

π

2
nνhu −

π

2
mνhv −

π

4

)
+sign(αhn,m + c2)√

2π

∫ ∞
3

dX
sin(klhn,m −X2/2− π

2nν
h
u − π

2mν
h
v )

X2

]
(49)

where3 =
√

2k(lhn,m − 2nb) and the Maslov indices areνhu = 4 andνhv = 2 for D, and

νhu = 2 andνhv = 2 for N .
In the caseα > 0 stationary points can also lie near the upper limitα = b2 of the

integration range and these stationary points can be treated in a similar way as is done
in this section. We did not include corresponding modifications of the contributions in
section 2.3.4 because these modifications are less important than forα ≈ −c2 since the
semiclassical amplitudes of the orbits go to zero as theα-values of the stationary points
approachb2. Furthermore, the EBK quantization is less accurate nearα = b2, and a correct
treatment of the stationary points nearα = b2 which correspond to the whispering gallery
orbits would also require a modification of the EBK-quantization rules. However, it will be
shown in section 2.3.7 that part of the perimeter contribution to the mean level density can
be obtained from boundary contributions atα = b2.

2.3.6. The contribution of the stable orbit.We now sum over all contributions from the
boundaryα = −c2 of the integrals in (39). These boundary contributions are given by the
last term in (48) and they exist for all values ofn andm, even when there is no stationary
point for these values. The only exception is when both values are equal to zero because
then the integrand is non-oscillatory and yields no boundary contribution. It has been shown
in general by Richens [22] that the contribution of a stable periodic orbit can be obtained
by summing over all boundary contributions in an integrable system.

The values of the actions and their derivatives atα = −c2 are given by

Iu|α=−c2 = b
√
E

π

∂Iu

∂α

∣∣∣∣
α=−c2

= −
√
E

2πc
arcsin

b

a

Iv|α=−c2 = 0
∂Iv

∂α

∣∣∣∣
α=−c2

=
√
E

2c

(50)

andJ (−c2) = b/(4πc). Summing over all boundary contributions one obtains

ds(E) =
∞∑′

n,m=−∞

ib

4πk

exp{2inkb − iπ
2 nν

h
u − iπ

2 mν
h
v }

πm− n arcsinb
a

=
∞∑
n=1

b

πk

sin(2nkb − π
2nν

h
u)

2 sin(n arcsinb
a
)

(51)
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where the prime at the first sum indicates that the term(n,m) = (0, 0) is omitted.
Furthermore, the relation

∞∑
m=−∞

(−1)m

z − πm =
1

sin(z)
(52)

has been used [35] and the fact thatνhv = 2 for D andN .
The semiclassical contribution of the stable orbit and its repetitionsds(E) is divergent

whenn arcsin(b/a) = mπ . This coincides with condition (23) for the appearance of a new
torus.

2.3.7. The perimeter contribution.At the boundary of the integrationα = b2 one also
obtains a contribution to the energy density. It is obtained by the approximation

boundary contribution of

{∫ α1

−∞
dα g(α)eikf (α)

}
= − i

k

g(α1)

f ′(α1)
eikf (α1) (53)

which follows by integrating by parts. Nearα = b2 the actions are expanded in powers of
ε = b2− α:

Iu ≈
√
E
√
ε3

3πab

Iv ≈ 2a
√
E

π
E
(π

2
,
c

a

)
− ε
√
E

πa
F
(π

2
,
c

a

)
.

(54)

It follows thatJ (α) ≈ −Iv(2E)−1∂Iu/∂α and it is proportional toε1/2 asε→ 0. For terms
with m 6= 0 the exponent in the integral (39) depends in leading-order linearly onε and
the corresponding boundary contribution vanishes. The only finite boundary contribution
comes from terms withm = 0 andn 6= 0. Applying (53) withg(α) = J (α) exp(−iπnνeu/2)
andkf (α) = 2πnIu one obtains

dp1(E) =
∞∑′

n=−∞

iIv
4πnE

exp

{
2π inIu− iπ

2
nνeu

}
|α=b2

= Iv

2πE

∞∑
n=1

sin( π2nν
e
u)

n

= −aE(c/a)

4πk
(55)

whereνhu = 3 has been inserted forD andN and the prime at the first sum indicates that
the termn = 0 is omitted. Term (55) is the perimeter contribution−L/(8πk) of the outer
arc of the half-ellipse to the mean spectral density, whereL = 2aE(e).

2.3.8. The contribution of the unstable orbit.We now consider the question: How can
the contribution of the unstable periodic orbit be obtained? This orbit has anα-value of
zero, and at this point the original EBK quantization is discontinuous and inaccurate. It
was first pointed out by Bogomolny [40] that the semiclassical contribution of the unstable
orbit can be obtained by using the uniform approximation for the semiclassical phase near
the separatrix. We follow his method in this section.

In the context of the uniform approximation it is more convenient to work with the
ᾱ-variable instead of theα-variable. For that reason we start again with equation (38) and
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change the integration variable fromIu andIv to ᾱ andE and obtain

dN,D(E) =
∞∑

n,m=−∞

∫ ᾱ1

ᾱ0

dᾱ J̄ (ᾱ, E)

× exp

{
2π in

(
Iu− 1

2
− βS,A(ᾱ)

π

)
+ 2π im

(
Iv − 2βS,A(−ᾱ)

π

)}
(56)

whereᾱ0 = −c
√
E/2, ᾱ1 = b2

√
E/(2c), and the new Jacobian is given by

J̄ (ᾱ, E) =
∣∣∣∣∂nu

∂E

∂nv

∂ᾱ
− ∂nv
∂E

∂nu

∂ᾱ

∣∣∣∣
=
∣∣∣∣∂Iu

∂E

(
∂Iv

∂ᾱ
+ 2

π

∂βS,A

∂ᾱ
(−ᾱ)

)
− ∂Iv
∂E

(
∂Iu

∂ᾱ
− 1

π

∂βS,A

∂ᾱ
(ᾱ)

)∣∣∣∣ . (57)

We now evaluate the contributions to the integrals in (56) from the vicinity ofᾱ = 0,
and we restrict ourselves to contributions withn = 2m since these terms are those which
correspond to the unstable orbit as discussed in section 2.1.

The derivative ofβS,A(ᾱ) with respect toᾱ is given by

∂

∂ᾱ
βS,A(ᾱ) = ± π

4 cosh(πᾱ)
+ 1

2
log |ᾱ| − 1

4
9

(
1

2
+ iᾱ

)
− 1

4
9

(
1

2
− iᾱ

)
(58)

where9(z) is the logarithmic derivative of the0-function [35]. For small values of̄α one
further has

Iu ≈
√
E(a − c)
π

− ᾱ

2π
− ᾱ

2π
log

8c
√
E

|ᾱ| +
ᾱ

π
log

a + c
b

Iv ≈ 2
√
Ec

π
+ ᾱ

π
+ ᾱ

π
log

8c
√
E

|ᾱ| .
(59)

With these equations the JacobianJ̄ is evaluated near̄α = 0

J̄ (ᾱ, E) ≈ 1

2π
√
E

(
a

π
log(8c

√
E)− 2c

π
log

a + c
b

± a

2 cosh(πᾱ)
− a

2π

[
9

(
1

2
+ iᾱ

)
+9

(
1

2
− iᾱ

)])
. (60)

In expression (60) forJ̄ we have set all appearinḡα-values equal to zero except in the
argument of the cosh- and9-function. The reason for this will become clear in the
following. Inserting equations (59) and (60) into (56) one obtains

dN,Du (E) = 2 Re
∞∑
m=1

∫
ᾱ≈0

dᾱ
(−1)m

2π
√
E

(
a

π
log(8c

√
E)− 2c

π
log

a + c
b
± a

2 cosh(πᾱ)

− a

2π

[
9

(
1

2
+ iᾱ

)
+9

(
1

2
− iᾱ

)])
exp

{
4ima
√
E + 4imᾱ log

a + c
b

}
(61)

where the relationsβS(ᾱ)+ βS(−ᾱ) = π/4 andβA(ᾱ)+ βA(−ᾱ) = 3π/4 have been used
in the exponent.

As one can see, the exponent in (61) depends linearly onᾱ and for that reason one
would not expect to obtain a contribution of the order of an unstable orbit fromᾱ = 0.
The reason that one does obtain this contribution nevertheless is because the Jacobian in
(60) has poles with Rēα = 0. More precisely,9( 1

2 + iᾱ) has poles at̄α = i(l + 1
2) with
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residuum i forl = 0, 1, . . ., 9( 1
2 − iᾱ) has poles at̄α = −i(l + 1

2) with residuum−i for
l = 0, 1, . . ., and 1/ cosh(πᾱ) has poles at̄α = i(l+ 1

2) with residuum−i(−1)l/π for l ∈ Z.
The contribution of the unstable orbit is obtained by closing the integration contour in the
upper half-plane and using Cauchy’s theorem

dN,Du (E) = 2 Re
∞∑
m=1

{ ∞∑
l=0

a(−1)m

2πk
exp

{
4imak − 2m log

a + c
b
− 4ml log

a + c
b

}
±
∞∑
l=0

a(−1)m(−1)l

2πk
exp

{
4imak − 2m log

a + c
b
− 4ml log

a + c
b

}}

= 2 Re
∞∑
m=1

{
a(−1)m

2πk

exp{4imak}
( a+c
b
)2m − ( a+c

b
)−2m

± a(−1)m

2πk

exp{4imak}
( a+c
b
)2m + ( a+c

b
)−2m

}

=
∞∑
m=1

a

πk
cos(4mak − πm)

{
1

2 sinh(2m arcsinhc
b
)
± 1

2 cosh(2m arcsinhc
b
)

}
.

(62)

This is the contribution of the unstable orbit which runs along thex-axis that is part of the
boundary of the half-ellipse.

Finally, we calculate the additional contribution fromn = m = 0 that arises if we do not
assume that the Maslov phases are constant as was done in section 2.3.3. This additional
contribution follows from the terms in (56) and (57) which contain the derivative ofβS,A
since these terms were neglected before

dp2(E) =
∫ ∞
−∞

dᾱ

[
1

π

∂Iv

∂E

∂

∂ᾱ
βS,A(ᾱ)− 2

π

∂Iu

∂E

∂

∂ᾱ
βS,A(−ᾱ)

]
≈
∫ ∞
−∞

dᾱ

[
c

π2
√
E

∂

∂ᾱ
βS,A(ᾱ)− a − c

π2
√
E

∂

∂ᾱ
βS,A(−ᾱ)

]
= −a
π2
√
E
βS,A(−ᾱ)

∣∣∣∣∞
−∞

= ±a
4π
√
E

(63)

where the integration range could be extended to±∞ since the main contribution comes
from ᾱ ≈ 0. The derivatives of the actions with respect toE were evaluated at̄α = 0, and
the fact thatβS,A(ᾱ)+ βS,A(−ᾱ) is constant was used. Furthermore, the limiting values of
βS,A were taken from (37). Equation (63) is the perimeter contribution of the major axis
for Neumann and Dirichlet boundary conditions, respectively, for the half-ellipse.

2.3.9. The joint contribution. Combining all results of the previous sections and adding
the contributions forD andN one obtains the trace formula for the full ellipse. We give it
here for the level densitŷd(k) = 2kd(E) in terms of the wavenumberk

d̂(k) = d̄(k)+
∞∑
n=3

[ n−1
2 ]∑

m=1

√
2kαen,m
π

4len,mF( π2 , κ
e
n,m)

nπ

√
2nab√
b2−αen,m

− len,m
cos

(
klen,m −

3π

2
n+ π

4

)
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+
∞∑
n=4
neven

[ n−1
2 ]∑

m=1

√
2k|αhn,m|
π

4lhn,mF
(
π
2 ,

1
κhn,m

)
nπ

√(
2nab√
b2−αhn,m

− lhn,m
)
(κhn,m)

2

×
[
2(αhn,m + c2) cos

(
klhn,m − πm−

π

4

)
+sign(αhn,m + c2)√

2π

∫ ∞
3

dX
sin(klhn,m −X2/2− πm)

X2

]
+
∞∑
m=1

4b

π

sin(4mkb)

2 sin
(
2m arcsinb

a

) + ∞∑
m=1

4a

π

cos(4mka −mπ)
2 sinh

(
2m arcsinhc

b

) (64)

whered̄(k) is the mean spectral density and3 =
√

2k(lhn,m − 2nb).

The same method can be used to also obtain the trace formula for quarter ellipses with
the four different boundary conditions given in section 2.2. We give here only the result.
The modified EBK-quantization conditions are

DD : Iu = nu+ 1

2
+ βA(ᾱ)

π

Iv

2
= nv + 1

2
+ βA(−ᾱ)

π
nu, nv = 1, 2, . . .

DN : Iu = nu+ 1

2
+ βA(ᾱ)

π

Iv

2
= nv + βA(−ᾱ)

π
nu, nv = 1, 2, . . .

ND : Iu = nu+ 1

2
+ βS(ᾱ)

π

Iv

2
= nv + 1

2
+ βS(−ᾱ)

π
nu, nv = 1, 2, . . .

NN : Iu = nu+ 1

2
+ βS(ᾱ)

π

Iv

2
= nv + βS(−ᾱ)

π
nu, nv = 1, 2, . . .

(65)

whereIv/2 with definition (11) is the value of the action in a quarter ellipse. The trace
formula for a quarter ellipse is given by

d̂(k) = d̄(k)+
∞∑
n=2

n−1
2∑

m= 1
2

√
2kαen,m
π

len,mF
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e
n,m

)
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2nab√
b2−αen,m
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(
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π

2
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4
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+
∞∑
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m= 1
2

√
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π
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π
2 ,

1
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)
nπ
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2nab√
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×
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+
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}
(66)
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Figure 4. The Fourier cosine transformsDQM(x) (full curve) andDSC (dotted curve) of the
level density, calculated from quantum energies and periodic orbits, respectively.

wherem now runs over half-integers in the sums over tori,3 =
√

2k(lhn,m − 2nb), and the

Maslov indices are given by

DD : νeu = 3 νev = 4 νhu = 4 νhv = 3

DN : νeu = 3 νev = 2 νhu = 4 νhv = 1

ND : νeu = 3 νev = 2 νhu = 2 νhv = 3

NN : νeu = 3 νev = 0 νhu = 2 νhv = 1.

(67)

The sum(νu + νv) in the last line of equation (66) can be taken either atα > 0 or α < 0
since it is invariant.

We remark that in equations (64) and (66) we did not include modifications for tori
close to the separatrix that were discussed in section 2.3.4.

2.4. Numerical results

In this section we compare the semiclassical approximation of the last section with exact
quantum results. For this purpose we consider a Fourier cosine transform of the oscillatory
part of the level density with a Gaussian damping term and a cut-off

D(x) = 1

kmax

∫ kmax

0
dk [d(k)− d̄(k)] cos(kx) exp

(
−z k

2

k2
max

)
. (68)

This function has peaks in the vicinity of the lengths of periodic orbits.
The calculations were carried out for a quarter ellipse witha = 1.1 andb = 0.9 and

with Dirichlet boundary conditions on all sides. The damping factor was chosen to be
z = 5. The functionD(x) was evaluated in three different ways and the results are denoted
DQM(x), DSC(x) andDEBK(x). The first functionDQM(x) was obtained from the quantum
energies. These energy levels were determined up to energyEmax= 20 000 by solving the
two Mathieu equations (28) and (29) numerically, which corresponds to 1198 energy levels.
The second functionDSC(x) was determined by using equation (66) with all periodic orbits
up to lengthl = 12 andn = 30, and the third functionDEBK(x) was determined from the
semiclassical energy levels that are solutions of the EBK conditions (65).

In figure 4, the results for the quantum spectrum and the trace formula,DQM(x) and
DSC(x), are compared. Both curves are in good agreement and can hardly be distinguished.
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Figure 5. The differencesDQM(x) − DSC(x) andDEBK(x) − DSC(x) between Fourier cosine
transforms of the level density.

For that reason we plot the difference between both curves in figure 5 (dotted curve). One
can see that the semiclassical error is approximately one order of magnitude smaller than
the functionD(x). Figure 5 also shows the difference betweenDEBK(x) andDSC(x) (full
curve) which is much smaller than the difference betweenDQM(x) andDSC(x). This shows
that the error which was introduced by deriving the trace formula from the EBK energies
with stationary phase and uniform approximations is much smaller than the original error of
the EBK quantization. This cannot necessarily be expected because the EBK-quantization
condition, the trace formula and the stationary phase approximations which connect both
approximations are all only valid in leading order of ¯h. A similar result was observed
previously for a circular billiard with a singular magnetic flux line [41]. The smallness
of DEBK(x) − DSC(x) shows also that the modifications for contributions of tori near the
separatrix due to equation (47) are not large in the range where the numerical examination
was carried out.

We also show that it is important to include complex orbits, i.e. the interference terms,
in (66). In figure 6 the differenceDQM(x)−DSC(x) is plotted whereDSC(x) was calculated
once with (full curve) and once without (dashed curve) the interference terms. One can see
that the semiclassical error is much bigger in the second case, especially nearx = 9. This
is due to a torus of complex orbits withn = 5 andm = 1.5 which is close to becoming
real. It becomes real forb/a ≈ 0.809 which is near the present value ofb/a = 11

9 ≈ 0.818.

3. The oval billiard

We now discuss how the semiclassical approximation for the elliptical billiard has to be
modified when the ellipse experiences a small perturbation which makes the system non-
integrable. We consider in particular a perturbation which consists of a deformation of the
ellipse into an oval-shaped billiard system introduced by Berry [30]. It has a parametrization
which expresses the radius of curvatureR of the boundary as a function of the angle9
between the tangent vector and thex-direction

R(9) = 1+ δ cos(29) (69)
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Figure 6. The differencesDQM(x) − DSC(x) between Fourier cosine transforms of the level
density with (full curve) and without (dotted curve) contributions from interference terms to
DSC(x).

where9 lies in the range [0, 2π). From this definition the dependence of thex- and
y-coordinates on9 is as follows [30]

x(9) = sin(9)+ δ
2

sin(9)+ δ
6

sin(39)

y(9) = − cos(9)+ δ
2

cos(9)− δ
6

cos(39).
(70)

The oval has an areaA = π − πδ2/6, a perimeterL = 2π , two half-axes of lengths
a = 1+ δ/3 andb = 1− δ/3, and it is a deformation of an ellipse of orderδ2. The billiard
can also be considered as a perturbation of the circle. Then the deformation is of orderδ.

Numerical examinations were performed for the deformation parameterδ = 0.3 for
which the half-axes of the oval billiard have the same lengths as those of the elliptical
billiard in the last section. We consider again a desymmetrized version of the billiard which
consists of a quarter oval with Dirichlet boundary conditions on all sides. For this system
the shortest periodic orbits were determined. They were obtained by searching for the zeros
of a system ofn functions wheren is the number of reflections of an orbit, and the functions
are defined by the differences between the angles of incidence and the angles of reflection
at each reflection point. A numerical routine was used to find the nearest zero for given
initial conditions, and the (two-parametric) initial conditions were varied to find all orbits
for a given numbern. This method worked well for our purpose since only the shortest
periodic orbits are needed.

Figure 7 represents all periodic orbits which are reflected up to five times on the oval-
shaped boundary of the quarter oval. They are presented by corresponding orbits in the full
oval since their structure can be seen more clearly there. All these orbits appear in pairs
which are labelled by letters. With the exception of the paira, all pairs of orbits result
from the break-up of tori of the ellipse. Since the perturbation is small, no subsequent
bifurcations of orbits occur in this length regime.

The differences in the lengths of orbits within a pair are shown in table 1. With the
exception of the first pair the length differences are very small. For that reason, the orbits
cannot be treated as isolated orbits in a semiclassical approximation if the energy is not
rather high. We discuss in the following the different uniform approximations by which
the contributions of the pairs to the semiclassical trace formula can be treated. Most of
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Figure 7. Periodic orbits in the oval billiard forδ = 0.3. The desymmetrized versions of
these orbits in the quarter oval represent all orbits which are reflected up to five times on the
oval-shaped boundary.

the pairs (b, c, d, f, g, i, j, k, l) result from a break-up of tori of the elliptical billiard with
α > 0, i.e. from tori which have a confocal ellipse as caustic. Their contribution can be
treated by the uniform approximation for the generic break-up of tori, that will be described
in the next section.

Other pairs (e, h,m) result from the break-up of tori of the ellipse withα < 0, i.e. from
tori with a confocal hyperbola as caustic. These tori all arose from a bifurcation of the
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Table 1. Properties of pairs of orbits in the quarter oval. The different columns show the mean
length l̄ the length difference1l and the quantity1t = TrM1+ TrM2− 4 for a pair of orbits.
The type column specifies whether the pair arose from the break-up of a torus of the ellipse
with a confocal ellipse or a confocal hyperbola as caustic, respectively.

Pair l̄ 1l 1t type

a 2.000 00 0.200 00 0.527 47
b 2.835 48 0.007 05 0.038 75 e
c 3.002 59 0.000 51 0.002 65 e
d 5.234 73 0.002 49 0.012 08 e
e 5.436 36 0.000 25−0.000 35 h
f 3.062 82 0.000 05 0.000 17 e
g 7.493 47 0.001 69 0.024 27 e
h 7.540 64 0.001 12−0.011 76 h
i 3.091 01 0.000 01 0.000 01 e
j 5.886 09 0.000 07 0.000 31 e
k 8.128 83 0.000 29 0.002 88 e
l 9.709 73 0.001 49 0.077 98 e
m 9.721 32 0.001 35−0.064 91 h

2b 5.670 96 0.014 11 0.617 22 e
3b 8.506 44 0.021 16 3.175 63 e

stable orbit in the ellipse, as the eccentricity of the ellipse was increased starting from the
circle. These tori are not necessarily well separated from the stable orbit in the ellipse, as
is expressed by the interference term in (49), and thus the usual formula for the break-up
of tori cannot be used.

The correct contributions of these pairs to the trace formula can be obtained by
considering the oval not as a deformation of the ellipse but as a deformation of the circle.
Then the pairs (e, h,m) are obtained not from the break-up of tori but from bifurcations
of the stable orbit along the vertical axis of the billiard (the left member of the paira in
figure 7). This stable orbit will be denoted byas in the following. The values ofδ for
which the orbit bifurcates follow from its stability matrix

δbif =
cos2

(
jπ

2m

)
1
3 + sin2

(
jπ

2m

) (71)

wherej andm are integers, andm denotes the repetition number for which the bifurcation
occurs. (The values in (71) are precisely the values ofδ for which the semiclassical
approximation (77) diverges.) The paire arises from a bifurcation of the three-fold repetition
of the orbitas at δbif ≈ 0.2308 (j = 2,m = 3), the pairh from a bifurcation of the four-fold
repetition ofas at δbif ≈ 0.1234 (j = 3, m = 4), and the pairm from a bifurcation of the
five-fold repetition ofas at δbif ≈ 0.0771 (j = 4, m = 5). For the paire the bifurcation is
shown in figure 8 by plotting the orbits for values ofδ nearδbif ≈ 0.2308. This bifurcation
results in four new orbits in the full oval, the right orbit in figure 8 which can be traversed
in both directions and thus represents two orbits, and the left orbit and its mirror image
(obtained by reflection on they-axis) which is not plotted.

It follows from the above considerations that the contributions of the pairse, h and
m are described by formulae for bifurcations that are discussed in section 3.2. This is a
very general property. If one considers an integrable system which depends on an external
parameter and in which bifurcations occur that result in the appearance of new tori, then
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Figure 8. The period-tripling bifurcation which yields the orbitse of figure 5. The orbits are
shown forδ = 0.230, δ = 0.235 andδ = 0.240 (from below), and the bifurcation occurs at
δbif = 3/13≈ 0.231.

in a slightly perturbed system there are bifurcations which result in a finite number of new
orbits. Thus, the break-up of tori which are close to a bifurcation is described by formulae
for bifurcations in which a finite number of orbits is involved.

3.1. Broken torus contribution

If an integrable system is perturbed then all tori of periodic orbits break up and only a
finite number of periodic orbits remain (except for degenerate cases). According to the
Poincaŕe–Birkhoff theorem the number of remaining orbits is even, half of them are stable
and half of them are unstable. The Poincaré–Birkhoff theorem does not specify the total
number of remaining orbits, but generally this number is two [42]. For the semiclassical
treatment of this case, i.e. the break-up of a torus into one stable and one unstable orbit,
a uniform approximation was derived by Tomsovicet al [20] and Ullmo et al [21]. This
approximation extends previous results of de Almeida [18, 43]. The formula can also be
applied to cases in which, due to the presence of discrete symmetries, the break-up of a
torus results inn stable andn unstable orbits with respectively identical actions, periods,
stabilities and Maslov indices. The uniform approximation for the contributions of these
orbits to the level density can be written in the following form

dbt (E) = 1

2πh̄r

√
2π |1S|
h̄

Re exp

{
i

h̄
S̄ − iπ

2
ν̄

}{[
T̄ + 1T

2√|TrMu− 2| +
T̄ − 1T

2√|TrMs− 2|

]

×J0

(
1S

h̄

)
+ i

[
Tu√|TrMu− 2| −

Ts√|TrMs− 2|
]

J1

(
1S

h̄

)
−
[

1T
2√|TrMu− 2| −

1T
2√|TrMs− 2|

]
J2

(
1S

h̄

)}
. (72)

In case of the break-up of a torus into 2n orbits due to the presence of discrete symmetries
the equation has to be multiplied byn. The indices u and s correspond to the unstable and



4588 M Sieber

stable orbit, respectively. Furthermore

S̄ = Su+ Ss

2
1S = Su− Ss

2
T̄ = Tu+ Ts

2

1T = Tu− Ts

2
ν̄ = νu+ νs

2

(73)

andS, T , ν, M andr denote the action, period, Maslov index, stability matrix and repetition
number of an orbit, respectively.

In the following we will use a slightly simplified version of (72) which is obtained by
applying the relation J2(z) = 2J1(z)/z − J0(z). The term 2J1(z)/z yields a modification of
the prefactor of the J1-Bessel function which is one order of ¯h smaller than the previous
prefactor of J1 in (72). Since we consider only the leading-order semiclassical approximation
we neglect this term and obtain

dbt (E) = 1

πh̄

√
2π |1S|
h̄

{
ĀJ0

(
1S

h̄

)
cos

(
S̄

h̄
− π

2
ν̄

)
+1AJ1

(
1S

h̄

)
cos

(
S̄

h̄
− π

2
(ν̄ − 1)

)}
(74)

where

Ā = 1

2r

[
Tu√|TrMu− 2| +

Ts√|TrMs− 2|
]

1A = 1

2r

[
Tu√|TrMu− 2| −

Ts√|TrMs− 2|
]
.

(75)

This approximation, as well as (72), interpolates over the whole regime from the torus
contribution to the contributions of isolated periodic orbits in the Gutzwiller approximation.
In the limit1S → 0 the mean amplitudēA diverges, but the product̄A

√|1S| remains finite,
and the whole expression yields the Berry–Tabor term for the semiclassical contribution of
a torus. In the opposite limit where1S/h̄ � 1 one can replace the Bessel functions by
their leading-order term for large arguments and obtains the Gutzwiller approximation for
the contributions of isolated orbits. Finally, we note that equation (74) in combination with
the definitions (73) and (75) is invariant under exchange of the labelsu and s. Thus, the
definitions in (73) and (75) can also be formulated in terms of an orbit 1 and an orbit 2
without specifying which of them is stable and which unstable.

3.2. Contribution of bifurcating orbits

There is only a finite number of generic forms in which periodic orbits in two-dimensional
systems bifurcate. They are characterized by normal forms that describe the classical motion
in the vicinity of a bifurcation. The different normal forms for generic bifurcations of
periodic orbits in two-dimensional systems were derived by Meyer [11] and Bruno [12, 13]
and are discussed in [43, 44]. Altogether there are six different kinds of bifurcations which
are classified according to the lowest repetition numberm of a central orbit for which the
bifurcation occurs. (A special case ism = 1 where there is no orbit before the bifurcation.)
There is one kind of bifurcation form = 1 up tom = 3, respectively, two kinds form = 4,
and one form > 4. The corresponding bifurcations are period-m-tupling bifurcations, i.e.
the primitive periods of the arising periodic orbits arem times the primitive period of the
bifurcating central periodic orbit at the bifurcation.

We restrict the discussion, in the following, to the casem > 4. This kind of bifurcation
is the first that can be observed when an integrable system is perturbed since the higher
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repetitions of a stable orbit bifurcate earlier than the lower repetitions. It has the following
form: a central stable periodic orbit bifurcates and two new periodic orbits appear, one
stable and one unstable, while the central orbit remains stable. The new appearing periodic
orbits are called satellite orbits.

For the casem > 4 a uniform approximation was derived in [17] which interpolates
over the regime from the bifurcation up to regions where the orbits can be described in the
Gutzwiller approximation. This uniform approximation was obtained by an extension of
the method of de Almeida and Hannay [14].

The final formula in [17] was given for bifurcating periodic orbits in billiard systems
and for bifurcating periodic orbits without turning points in systems with potentials. The
derivation in [17] can also be applied to orbits with turning points, since only the Maslov
index has to be changed. The following uniform formula for the contributions of bifurcating
periodic orbits to the level density includes all these cases

dbif(E) = 2(ε̂)

πh̄

√
2π |1S|
h̄
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h̄

)
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2
ν̄

)
+1AJ1
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)
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− π

2
(ν̄ − 1)

)}

+sign(ε̂)
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∫ ∞
3

dX
cos
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h̄
+ β

2X
2− π

2 (ν − β)
)

X2

+ T0

πh̄mr

cos
(
S0
h̄
− π

2 ν0
)

√|TrM0− 2| . (76)

Here3 =
√

2β[S0− S̄]/h̄ and the index 0 denotes properties of the central periodic orbit.
ε̂ is a parameter that is positive when all three orbits are real, and negative when only the
central orbit is real. The values ofν andβ can be obtained from the Maslov indices of the
(real) periodic orbits, sinceν0 = ν+ sign(ε̂)β, νu = ν andνs = ν−β. The other quantities
are defined in (73) and (75). The repetition number of the central stable orbit ismr wherem
is the lowest repetition number for which the bifurcation occurs. (When themth repetition
of a periodic orbit bifurcates, the bifurcation occurs also for all repetition numbers which
are a multiple ofm.) Equation (76) is valid as long as no subsequent bifurcations of the
participating periodic orbits occur before they can be considered isolated. Note that formula
(76) in combination with definitions (73) and (75) is again invariant under exchange of the
indices u and s. The different terms in equation (76) can be interpreted as follows. The
first term with the two Bessel functions is a joint contribution of the two satellite orbits. It
has a form which is identical to the broken torus contribution (74). The last term in (76)
is the semiclassical contribution of the central stable orbit, and the remaining term is an
interference term between satellite orbits and central orbit.

The properties of the three orbits that participate in the bifurcation are summarized in
table 2.

The bifurcations in the oval billiard that lead to the pairse, h andm are not generic.
This is due to the symmetries of the billiard system. But the normal forms which describe
these bifurcations agree with normal forms of generic bifurcations, namely with those for
double the repetition number. For example, the paire results from a bifurcation of the
three-fold repetition of the orbitas, but its normal form corresponds to that of a generic
bifurcation with repetition numberm = 6. This follows from the treatment of bifurcations in
the presence of symmetries [45, 46]. It can be understood by considering a Poincaré section
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Table 2. Properties of orbits which participate in a generic period-m-tupling bifurcation with
m > 5. ξ0 denotes the central orbit, andξu andξs denote the unstable and stable satellite orbits,
respectively.

β = 1 ε̂ < 0 : ξ0 stable, ν0 = ν − 1
ε̂ > 0 : ξ0 stable, ν0 = ν + 1

ξu unstable, νu = ν
ξs stable, νs = ν − 1
S0 > Su > Ss

β = −1 ε̂ < 0 : ξ0 stable, ν0 = ν + 1
ε̂ > 0 : ξ0 stable, ν0 = ν − 1

ξu unstable, νu = ν
ξs stable, νs = ν + 1
Ss > Su > S0

of surface perpendicular to the central orbit. For a generic period-m-tupling bifurcation with
m > 4, the map from the Poincaré section of surface at some starting point to the Poincaré
section of surface afterm traversals of the central orbit has 2m fixed points near the central
orbit (after the bifurcation);m of them correspond to the new stable orbit andm to the new
unstable orbit, since both orbits cross the Poincaré section of surfacem times before they
close. For the considered bifurcations in the oval billiard there are 4m instead of 2m fixed
points in the vicinity of the central orbit, since two new stable and two new unstable orbits
arise, but the number and arrangement of stable and unstable fixed points is the same as for
a generic period-(2m)-tupling bifurcation.

As a consequence, also the period-tripling and period-quadrupling bifurcations of the
stable vertical orbitas in the oval billiard can be described by the formula for generic
bifurcations withm > 4. The only difference is thatm has to be replaced by 2m in
equation (76) and the whole formula has to be multiplied by two if one considers the
bifurcation in the full oval.

In the desymmetrized billiard, the quarter oval, the orbitas runs along a part of the
boundary of the billiard and equation (76) has to be modified in a different way. We
describe this by first looking at the Gutzwiller contribution of thenth repetition of the orbit
as which is modified to take account of the fact thatas is a boundary orbit

d̂nas(E) =
1

πh̄

T1

2n
√|TrM1− 2| cos

(
S1

h̄
− π

2
ν1

)
+ 1

πh̄

T2

2n
√|TrM2− 2| cos

(
S2

h̄
− π

2
ν2

)
= b

2πk

[
sin(2nkb)

2 sin(nv)
− cos(2nkb)

2 cos(nv)

]
(77)

whereb = 1−δ/3 andv = arcsin(
√
(1− δ/3)/(1+ δ)). The second line in equation (77) is

given in dimensionless units. The quantities with index 1 are those of the vertical stable orbit
in the half-oval with Dirichlet boundary conditions on thex-axis. Furthermore,T2 = T1,
S2 = S1, M2 = −M1 andν2 = ν1+ 1+ 2([nv/π ] mod 2). Equation (77) has the form of a
sum of contributions from two orbits, each with half the usual amplitude. Bifurcations of
thenth repetition of the orbitas occur whenδ 6= 0 and one of the two terms in (77) diverges.
Approximation (77) is only valid if the orbit is well separated from a bifurcation. Near a
bifurcation it has to be modified by replacing the term which diverges at the bifurcation
by equation (76) wherem is twice the lowest repetition number for which the bifurcation
occurs andr = 2n/m. If both terms are close to a bifurcation then both terms have to be
replaced.
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Figure 9. The Fourier cosine transformsDQM(x) (full curve) andDCUA (dotted curve) of the
level density, calculated from quantum energies and periodic orbits, respectively.

In the following we apply the uniform approximation (76) and its modifications in
order to describe the break-up of tori of the ellipse withα < 0. A comparison with the
semiclassical contributions of the tori in the elliptical billiard (section 2.3.5) shows that
this effectively corresponds to an application of the broken torus approximation (74) to the
torus term in equation (49). The interference term and the contribution of the bifurcating
stable orbit do not change their form. This is related to the fact, that for a generic period-
m-tupling bifurcation withm > 4 the differences of the actions of the satellite orbits grow
slower than the differences between the actions of the satellite orbits and the action of the
central stable orbit. This is not the case for all bifurcations. For example, there is a period-
doubling bifurcation in the ellipse for a ratio of the half-axesa/b = √2. This bifurcation
is again described by approximation (49) (plus the contribution of the stable orbit), but in
this case it is not correct to apply the broken torus approximation (74) to the torus term
in equation (49) in order to describe the break-up of the torus. Instead, one has to use the
uniform approximation for a generic bifurcation withm = 4 which has a more complicated
form and is described by a diffraction catastrophe integral for the catastropheX9 [14].

3.3. Numerical results

In the following we examine different approximations for the spectral density numerically.
For that purpose the energy levels of the quarter oval withδ = 0.3 were determined by a
boundary integral method [47–49] up to energyEmax = 20 000. This corresponds to 1190
different energy levels.

In order to compare semiclassical results with quantum mechanical results we consider
again the Fourier cosine transformD(x) with a cut-off that is defined in (68). The damping
factor is againz = 5. Figure 9 compares determinations ofD(x) from the quantum
mechanical spectrumDQM(x) with the uniform approximationDCUA(x). For the calculation
of DCUA(x) all periodic orbits up to lengthl = 12 and up to 30 reflections on the boundary
were included. Both curves are in good agreement and it is difficult to see the differences.
For that reason we plot in the following figures the semiclassical error, i.e. the difference
between the quantum mechanical curveDQM(x) and different semiclassical (or uniform)
approximations for it.

The most basic semiclassical approximation for a quasi-integrable system, i.e. for a
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Figure 10. The semiclassical errorsDQM(x)−DQT(x) (dotted curve) andDQM(x)−DQTI(x)

(full curve) for the quasitorus approximation with and without interference terms, respectively.

slightly perturbed integrable system, is the quasitorus approximation. In this approximation
the pairs of periodic orbits are treated as if they still contribute like a torus of periodic orbits.
Here we use a quasitorus approximation in which the semiclassical amplitudes and phases
are determined directly from the corresponding periodic orbits. This is done by setting1S

equal to zero in equation (74). This approximation is used for all pairs of orbits except for
the paira and its repetitions. For this pair the action difference is already quite large, and
the orbits are treated as separate periodic orbits. In more detail, the contribution of thenth
repetition of the unstable orbitau is approximated by

d̂nau(E) =
a(−1)n

2πk

[
cos(2nka − nπ2 )

2 sinh(nu)
− cos(2nka − nπ2 )

2 cosh(nu)

]
(78)

with a = 1+ δ/3 andu = arccosh(
√
(1+ δ/3)/(1− δ)), and the contributions of the stable

orbit as and its repetitions by equation (77).
The semiclassical error for the quasitorus approximationDQM(x)−DQT(x) is plotted as

a dotted curve in figure 10. This approximation already works relatively well. This is due
to the fact that the action differences within pairs of orbits are still relatively small and that
the orbits are not very close to a bifurcation. However, in comparison with the semiclassical
error for the ellipse in figure 5, the semiclassical error for the quasitorus approximation in
figure 10 is clearly larger. The scales of the plots differ by approximately 50%. In order to
improve the approximation we apply equation (76) for the pairs of orbits which arose from
a bifurcation, i.e. for the pairse, h andm, but we still set the action differences in formulae
(74) and (76) equal to zero. Note that with this substitution equation (76) has exactly
the same form as that of the contribution of a torus near a bifurcation (see section 2.3.5).
This approximation can thus be considered as an improved quasitorus approximation which
takes into account cases in which quasitori are close to a bifurcation. The corresponding
semiclassical errorDQM(x) − DQTI(x) is plotted in figure 10 as a full curve. One can
see a clear improvement nearx ≈ 5.4. This length corresponds to the paire which is
that pair out ofe, h andm which is closest to a bifurcation. This can be seen from the
differences between the mean lengths of the pairs and themth repetition of the central orbit
from which they arose by a bifurcation:̄le − 3las = 0.036 36, l̄h − 4las = 0.340 64, and
l̄m − 5las = 0.721 32. The pairsh andm are already well separated from the orbitas and
thus the inclusion of the interference term does not improve the approximation.

For a further improvement of the semiclassical approximation we now apply the uniform
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Figure 11. The semiclassical errorsDQM(x)−DQTI(x) (dotted curve) andDQM(x)−DUA(x)

(full curve) for the quasitorus approximation with interference term and for the uniform
approximation, respectively.

approximations (74) and (76) without setting1S equal to zero. The resultDQM(x)−DUA(x)

is shown in figure 11 as a full curve. For a comparison with the previous approximation
the functionDQM(x) − DQTI(x) is plotted again as a dotted curve. One can observe a
clear improvement of the approximation at three places which correspond to the first three
repetitions of the pairb. Table 1 shows that this is the pair for which the length difference
is largest, and the size of the semiclassical error increases with the size of1l. We note that
for the decrease of the semiclassical error it is important to use the whole formula (74) and
not only the first term with the J0-Bessel function. A criterion for the importance of the
second term is the size of1t in table 1 which increases rapidly with the repetition number
of the pairb.

Even for the uniform approximation there is still a relatively large error atx ≈ 9. This
error is due to the fact that up to now we considered only contributions from real orbits
to the spectral density. But before a bifurcation there are also contributions from complex
orbits as is expressed by the interference term in equation (76). The error atx ≈ 9 is due
to the fact that the five-fold repetition of the orbitas is close to a second bifurcation which
occurs atδbif ≈ 0.3497 (equation (71) withj = 3 andm = 5). As a final step we improve
the approximation by taking into account the contribution of these complex orbits. This is
done by determining these orbits for valuesδ > δbif where they are real. From these data
the properties of the orbits can be extrapolated into the complex region. The final result
DQM(x)−DCUA(x) is shown in figure 12 as a full curve. For a comparison with the previous
approximation the functionDQM(x)−DUA(x) is plotted again as a dotted curve. As one can
see, the error is clearly decreased nearx = 9 by including the contribution of the complex
orbits, and the final semiclassical error is of the same size as in the elliptical billiard. This
shows that by using the uniform approximations (74) and (76) the same accuracy of the
semiclassical approximation can be achieved as in the unperturbed integrable system.

4. Conclusions

Most applications of semiclassical trace formulae in literature have concentrated on cases
where the periodic orbits are either isolated or occur in families. These approximations are
valid only in restricted classes of systems. In general systems, it is common that semiclassi-



4594 M Sieber

–0.06

–0.04

–0.02

0.0

0.02

0.04

0.06

Figure 12. The semiclassical errorsDQM(x)−DUA(x) (dotted curve) andDQM(x)−DCUA(x)

(full curve) for the uniform approximation with and without the contribution of a pair of complex
orbits, respectively.

cal contributions of periodic orbits cannot be considered as being isolated from contributions
of other periodic orbits in their neighbourhood. This requires the use of uniform approxima-
tions which take account of the underlying classical structures and yield joint contributions
of neighbouring periodic orbits. In systems where the classical phase space has regular
and chaotic regions this is a generic situation, and semiclassical quantization rules in terms
of periodic orbits in these systems always involve uniform approximations. But uniform
approximations can also be necessary in integrable or chaotic systems, for example when
bifurcations of periodic orbits occur in integrable systems or when periodic orbits are close
to creeping or diffractive orbits in chaotic billiard systems [50, 51].

In the first part of this paper we examined an integrable system, a billiard in the form
of an ellipse, and derived a trace formula for it. The elliptical billiard is a standard example
of an integrable system, yet its semiclassical trace formula is more complicated than a
summation over semiclassical contributions of isolated tori. These complications are due
to the presence of the separatrix and of the stable periodic orbit. We were particularly
interested in the treatment of the bifurcations of the stable orbit and its connection to
generic bifurcations when the ellipse is perturbed. We derived a semiclassical trace formula
which takes account of these bifurcations, and we examined its semiclassical accuracy.

In the second part of this paper we deformed the ellipse into an oval which is non-
integrable. It was shown that in the quasi-integrable regime it is not always sufficient to
treat the break-up of tori by the general formulae of [18, 20, 21]. If a torus in the integrable
system is close to a bifurcation, then uniform formulae for general bifurcations are needed
for describing its break-up. In the numerical section it was shown that with the uniform
formulae for the break-up of tori and for the bifurcations the same semiclassical accuracy
can be achieved as in the unperturbed integrable system.

If the billiard system is deformed more, then the stable periodic orbits of the billiard
undergo further bifurcations. A semiclassical description of a system in the truly mixed
regime, i.e. not in the near-integrable regime, requires the use of uniform approximations
for all generic bifurcations [52]. In the case where the system has discrete symmetries there
are further bifurcations which are specific for the considered symmetry. The application of
uniform approximations for these bifurcations requires not only the determination of all real
periodic orbits up to some length, but also of all complex periodic orbits which are close to
becoming real. Additional complications can arise when a periodic orbit undergoes several
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subsequent bifurcations which cannot be considered isolated. This shows, as is well known,
that semiclassical trace formulae for systems with mixed phase space are definitely more
complicated as for integrable or chaotic systems.
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[15] Kuś M, Haake F and Delande D 1993 Prebifurcation periodic ghost orbits in semiclassical quantizationPhys.

Rev. Lett.71 2167–71
[16] Atkins K M and Ezra G S 1994 Semiclassical density of states at symmetric pitchfork bifurcations in coupled

quartic oscillatorsPhys. Rev.A 50 93–7
[17] Sieber M 1996 Uniform approximation for bifurcations of periodic orbits with high repetition numbersJ.

Phys. A: Math. Gen.29 4715–32
[18] de Almeida A M O 1986 Semiclassical energy spectrum of quasi-integrable systemsQuantum Chaos and

Statistical Nuclear Physics (Lecture Notes in Physics 263)ed T Seligman (New York: Springer) pp 197–
211

[19] Creagh S C 1996 Trace formula for broken symmetryAnn. Phys.248 60–94
[20] Tomsovic S, Grinberg M and Ullmo D 1995 Semiclassical trace formulas of near-integrable systems:

ResonancesPhys. Rev. Lett.75 4346–9
[21] Ullmo D, Grinberg M and Tomsovic S 1996 Near-integrable systems: Resonances and semiclassical trace

formulasPhys. Rev.E 54 136–52
[22] Richens P J 1982 On quantisation using periodic classical orbitsJ. Phys. A: Math. Gen.15 2101–10
[23] Ayant Y and Arvieu R 1987 Semiclassical study of particle motion in two-dimensional and three-dimensional

elliptical boxes: IJ. Phys. A: Math. Gen.20 397–409
[24] Arvieu R and Ayant Y 1987 Semiclassical study of particle motion in two-dimensional and three-dimensional

elliptical boxes: IIJ. Phys. A: Math. Gen.20 1115–36



4596 M Sieber

[25] Gradshteyn I S and Ryzhik I M 1980 Table of Integrals, Series, and Products(San Diego, CA: Academic)
corrected and enlarged edition

[26] Keller J B and Rubinow S I 1960 Asymptotic solution of eigenvalue problemsAnn. Phys.9 24–75
Keller J B and Rubinow S I 1960Ann. Phys.10 303–5 (Errata)

[27] Sinai Y G 1976 Introduction to Ergodic Theory(Princeton, NJ: Princeton University Press)
[28] Chang S-J and Friedberg R 1988 Elliptical billiards and Poncelet’s theoremJ. Math. Phys.29 1537–50
[29] Crespi B, Chang S-J and Shi K-J 1993 Elliptical billiards and hyperelliptic functionsJ. Math. Phys.34

2257–89
[30] Berry M V 1981 Regularity and chaos in classical mechanics, illustrated by three deformations of a circular

‘billiard’ Eur. J. Phys.2 91–102
[31] Tabanov M B 1994 Billiard in an ellipse, geodesics on an ellipsoid, and new elliptic coordinatesRuss. Acad.

Sci. Dokl. Math.48 438–44
[32] Okai S, Nishioka H and Ohta M 1990 Periodic orbits in elliptic billiardsMem. Konan Univ., Sci. Ser.37

29–45
[33] Richter P H, Wittek A, Kharlamov M P and Kharlamov A P 1995 Action integrals for ellipsoidal billiards

Z. Naturf.a 50 693–710
[34] Morse P M and Feshbach H 1953Methods of Theoretical Physics, Part I and II(New York: McGraw-Hill)
[35] Abramowitz M and Stegun I A (ed) 1965Handbook of Mathematical Functions(New York: Dover)
[36] Traiber A J S,Fendrik A J and Bernath M 1989 Level crossings and commuting observables for the quantum

elliptic billiard J. Phys. A: Math. Gen.22 L365–70
[37] Waalkens H, Wiersig J and Dullin H R 1996Elliptic Quantum Billiard Preprintchao-dyn/9612020
[38] Ussishkin I The quantization of billiards in the scattering approach beyond the semiclassical approximation

MSc ThesisWeizmann Institute of Science
[39] Tanner G 1997 How chaotic is the stadium billiard? A semiclassical analysisJ. Phys. A: Math. Gen.30

2863–88
[40] Bogomolny E B 1988 Smoothed wave functions of chaotic quantum systemsPhysica31D 169–89
[41] Reimann S M, Brack M, Magner A G, Blaschke J and Murthy M V N 1996 Circular quantum billiard with

a singular magnetic flux linePhys. Rev.A 53 39–48
[42] Lichtenberg A J and Lieberman M A 1992 Regular and Chaotic Dynamics(New York: Springer) 2nd edn
[43] de Almeida A M O 1988Hamiltonian Systems: Chaos and Quantization(Cambridge: Cambridge University

Press)
[44] Arnold V I (ed) 1993Dynamical Systems III. Mathematical Aspects of Classical and Celestial Mechanics

(Berlin: Springer)
[45] Rimmer R J 1982Generic Bifurcations for Involutory Area Preserving Maps (Memoirs of the AMS no 272)

(Providence, RI: American Mathematical Society)
[46] Aguiar M A M D, Malta C P, Baranger M and Davies K T R 1987 Bifurcations of periodic trajectories in

non-integrable Hamiltonian systems with two degrees of freedom: numerical and analytical resultsAnn.
Phys.180 167–205

[47] Riddell R J Jr 1979 Boundary-distribution solution of the Helmholtz equation for a region with cornersJ.
Comput. Phys.31 21–41

[48] Riddell R J Jr1979 Numerical solution of the Helmholtz equation for two-dimensional polygonal regionsJ.
Comput. Phys. 31 42–59

[49] Berry M V and Wilkinson M 1984 Diabolical points in the spectra of trianglesProc. R. Soc.A 392 15–43
[50] Primack H, Schanz H, Smilansky U and Ussishkin I 1996 Penumbra diffraction in the quantization of

dispersing billiardsPhys. Rev. Lett.76 1615–18
[51] Sieber M, Pavloff N and Schmit C 1997 Uniform approximation for diffractive contributions to the trace

formula in billiard systemsPhys. Rev.E 55 2279–99
[52] Schomerus H and Sieber M 1997 Bifurcations of periodic orbits and uniform approximationsJ. Phys. A:

Math. Gen.30 4537–62


